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Abstract
In oceanic ecosystems, the nature of barriers to gene flow and the processes by 
which populations may become isolated are different from the terrestrial environ-
ment, and less well understood. In this study we investigate a highly mobile species 
(the sperm whale, Physeter macrocephalus) that is genetically differentiated between 
an open North Atlantic population and the populations in the Mediterranean Sea. 
We apply high- resolution single nucleotide polymorphism (SNP) analysis to study the 
nature of barriers to gene flow in this system, assessing the putative boundary into 
the Mediterranean (Strait of Gibraltar and Alboran Sea region), and including novel 
analyses on structuring among sperm whale populations within the Mediterranean 
basin. Our data support a recent founding of the Mediterranean population, around 
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1  |  INTRODUC TION

In oceanic ecosystems, geographical barriers are often less rel-
evant than oceanographic and other environmental factors in 
shaping the genetic structure of populations (e.g., Hoelzel, 1994; 
Palumbi, 2004; Van Cise et al., 2019; Westbury et al., 2022). 
Varying selection pressures, patterns of connectivity and genetic 
drift shape the diversity of species, potentially leading to greater 
geographical diversity in species with a wide latitudinal distribution 
range (Ralph & Coop, 2010). In general, cetaceans are highly mo-
bile with high dispersal potential (see Mrusczok et al., 2021; Peres 
dos Santos et al., 2022; Stevick et al., 2011; Violi et al., 2021). Even 
so, they often show population genetic structure over relatively 
small geographical ranges (e.g., Hoelzel, 2009). In some cases, mi-
gratory whales from different stocks may mix on feeding grounds 
(Larsen et al., 1996; Palumbi & Baker, 1994). In conservation biol-
ogy, the identification and protection of genetically distinct local 
populations, including those in mixed assemblages, is essential for 
conserving evolutionary potential and reducing extinction risks 
(e.g., Avise, 2009). Given the potential for population structure to 
be cryptic in the marine environment, both empirical data defining 
populations and an understanding of the evolutionary mechanisms 
generating structure are required to facilitate effective conserva-
tion and management (e.g., Hohenlohe et al., 2021; Holderegger 
et al., 2020; Luck et al., 2003).

In this study, we investigate fine- scale population structure in 
the sperm whale (Physeter macrocephalus), a species with a global 
range across ocean basins (see Whitehead, 2018), considered to play 
a fundamental role in the balance of oceanic ecosystems (Würtz & 
Simard, 2007). Worldwide and for up to three centuries, this species 
was the focus of two intensive hunting periods (Whitehead, 2002). 

From a pre- whaling abundance of over 1 million, today there are an 
estimated 844,761 individuals (Whitehead & Shin, 2022) and they 
are now globally classified as Vulnerable on the IUCN red list (Taylor 
et al., 2019).

Range- wide population genetic studies of sperm whales have 
identified several key features. Genetic variation is low especially 
at mitochondrial DNA (mtDNA) (Alexander et al., 2013, 2016; Morin 
et al., 2018), and low enough to suggest a historical population 
bottleneck (see Lyrholm & Gyllensten, 1998; Morin et al., 2018) or 
cultural hitchhiking (genetic variation cosegregating according to 
cultural structure; see Whitehead, 2017). In both the Atlantic and 
Indian Oceans, mtDNA structure was found despite the absence of 
clear geographical boundaries (Alexander et al., 2016; Engelhaupt 
et al., 2009). Within the Pacific Ocean, the lack of genetic structure at 
mtDNA was proposed to be consistent with the wider dispersal scale 
of females compared to Atlantic populations (Mesnick et al., 2011; 
Rendell et al., 2012; Whitehead et al., 2012). Discrepancy between 
mtDNA-  and nuclear- DNA- based population structure was sug-
gested to imply male- mediated gene flow (Engelhaupt et al., 2009; 
Mesnick et al., 2011).

Here, we focus on the populations of sperm whales within the 
Mediterranean Sea and in nearby Atlantic waters to investigate the 
mechanisms for maintaining fine- scale population structure in this 
region. Engelhaupt et al. (2009) reported differentiation between 
the Mediterranean Sea and North Atlantic at microsatellite DNA 
and mtDNA loci. Based on a mitochondrial genome phylogeny, 
Morin et al. (2018) found evidence for differentiation, but proposed 
that the Mediterranean lineage was founded from the Atlantic pop-
ulation only ~20,000 years ago, at the end of the last glacial maxi-
mum. Consistent with genetic differentiation, sperm whales show 
differential usage of vocal “codas” (see Frantzis & Alexiadou, 2008) 

the time of the last glacial maximum, and show concerted historical demographic pro-
files in both the Atlantic and the Mediterranean. In each region there is evidence for a 
population decline around the time of the founder event. The largest decline was seen 
within the Mediterranean Sea where effective population size is substantially lower 
(especially in the eastern basin). While differentiation is strongest at the Atlantic/
Mediterranean boundary, there is also weaker but significant differentiation between 
the eastern and western basins of the Mediterranean Sea. We propose, however, that 
the mechanisms are different. While post- founding gene flow was reduced between 
the Mediterranean and Atlantic populations, within the Mediterranean an important 
factor differentiating the basins is probably a greater degree of admixture between 
the western basin and the North Atlantic and some level of isolation between the 
western and eastern Mediterranean basins. Subdivision within the Mediterranean Sea 
exacerbates conservation concerns and will require consideration of what distinct im-
pacts may affect populations in the two basins.

K E Y W O R D S
admixture, cetaceans, demography, evolution, genomics, population structure
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within the Mediterranean compared to elsewhere (Drouot, Goold, 
et al., 2004; Pavan et al., 2000; Teloni, 2005).

Within the northeast Atlantic, sperm whales are regularly pres-
ent (see Fais et al., 2016; Silva et al., 2014; Alves et al., 2018; Boys 
et al., 2019; Ferreira et al., 2022). Within the Mediterranean, sperm 
whales are widely distributed in both the western and eastern ba-
sins (see Aïssi et al., 2012, 2014; Ascheri & Fontanesi, 2023; Bellomo 
et al., 2019; Fiori et al., 2014; Frantzis et al., 2003, 2014; Mussi 
et al., 2014; Notarbartolo di Sciara et al., 2008; Pirotta et al., 2011; 
Pirotta, Brotons, et al., 2020; Pirotta, Vighi, et al., 2020; Rendell & 
Frantzis, 2016; Tepsich et al., 2014). In the Strait of Gibraltar, they 
are regularly seen both east and west of the Strait (de Stephanis 
et al., 2008), suggesting the potential for gene flow despite evidence 
for differentiation (e.g., Engelhaupt et al., 2009). Movement by 
males within the Mediterranean has been broadly documented (e.g., 
Alessi et al., 2014; Carpinelli et al., 2014; Mussi et al., 2014; Rendell 
et al., 2014) including movement from the western to the eastern 
basin (Frantzis et al., 2011), though such direct observations do not 
necessarily imply local mating success and effective gene flow.

To date, no studies have assessed sperm whale population genet-
ics within the Mediterranean Sea, though this information is essential 
in support of effective conservation strategies (see Notarbartolo di 
Sciara, 2014). Conservation planning could furthermore benefit from 
information on current and past demographic trajectory. Ingestion 
of plastic debris, collisions with ships and entanglements put a strain 
on the Mediterranean population (Notarbartolo di Sciara, 2014), 
which numbers fewer than 2,500 mature individuals and is classified 
as Endangered in the IUCN Red List (Pirotta et al., 2021). Although 
this assessment is justified by the observed mortality levels at pres-
ent, no robust data regarding population trends exist (Rendell & 
Frantzis, 2016).

Here we assess the pattern and mechanisms of demographic 
trends and population structure of a highly mobile species showing 
population structure within an oceanic basin. We use high- resolution 
nuclear genetic analyses (double digest restriction site- associated 
DNA sequencing: ddRADseq) to assess the pattern and level of gene 
flow within the Mediterranean Sea and between the Atlantic Ocean 
and the Mediterranean Sea. We also consider ongoing and historical 
population dynamics since the putative founding of the population, 
and implications for the effective conservation management of this 
endangered population. These data provide transferable inference 
supporting the conservation of other mobile marine species in simi-
lar, recently founded habitats.

2  |  MATERIAL S AND METHODS

Sperm whale tissue samples were obtained during various research 
projects between 1999 and 2018. Skin biopsy samples were col-
lected in the Azores, Madeira, Strait of Gibraltar and the Ligurian– 
Provençal area, while skin and muscle samples were obtained from 
stranded individuals in the Canary Islands, Galicia, Tyrrenian Sea, 
Adriatic Sea and the Greek Seas. Altogether the Mediterranean 

samples were sourced from six different areas in four different 
countries (Greece, Italy, France and Spain) and the Atlantic samples 
were from four different areas (Galicia, Azores, Canary Islands and 
Madeira; Figure 1; Table S1).

2.1  |  DNA extraction and library preparation

DNA was extracted both by using OMEGA BIOTEK and MN 
MACHEREY- NAGEL kits following the manufacturers' proto-
cols, and by the phenol chloroform method (after Hoelzel, 1998). 
Genomic DNA concentration was quantified using the Qubit High 
Sensitivity kit (Thermo Fisher Scientific). We applied the ddRADseq 
methodology (Peterson et al., 2012) for sperm whales for the first 
time in this study. Two sequencing libraries, each of 80 samples, 
were constructed following the protocol of Peterson et al. (2012). 
DNA (500 ng) was digested using enzymes MspI and HindIII (New 
England Biolabs). Adapters were ligated using T4 ligase in a reac-
tion solution with 1× buffer, 400 units of T4 ligase and 1.5 μm of 
adapter that contained a unique in- line barcode for each individual. 
Uniquely barcoded samples were pooled, and cleaned using cali-
brated streptavidin- coated SpeedBeads (Sera- Mag). Fragments be-
tween 360 and 560 bp were size- selected using a Pippin Prep (Sage 
Science). Sixteen uniquely indexed libraries were prepared, each 
containing 10 individually barcoded samples, with randomized allo-
cation of individuals across libraries. Fragment size distributions of 
resulting libraries were evaluated using a 2200 Tapestation (Agilent 
Technologies), and library DNA concentrations were estimated 
using qPCR (quantitative polymerase chain reaction). Two final li-
braries were then sequenced on an Illumina HiSeq 2500 using 125- 
bp paired- end sequencing at the DBS Genomics facility at Durham 
University (https://www.dur.ac.uk/biosc ience s/servi ces/dna/dnase 
quenc ing/).

2.2  |  SNP calling

Reads were trimmed to 110 bp, demultiplexed and filtered using pro-
cess_radtags in stacks version 2.2 (Rochette et al., 2019). Unpaired 
reads were discarded. Paired reads were aligned using the very- 
sensitive mode of bowtie version 2.2.5 (Reinert et al., 2015) against a 
sperm whale reference genome downloaded from the NCBI website 
(GCA_002837175.2). samtools version 1.9 (Li et al., 2009) was used to 
filter out reads that aligned discordantly, as well as reads with a map-
ping quality below 20. Single nucleotide polymorphisms (SNPs) were 
called using the stacks refmap pipeline with default settings. Sites 
were not filtered based on depth (an option which has purposely 
been removed from stacks version 2.0 onwards), but instead based on 
a likelihood ratio test which weighs the evidence for heterozygous 
vs. homozygous calls (which depends partially on coverage), using 
the default p- value threshold of .05. The Populations command of 
stacks was run with r = .7 and p = 3 (Rochette et al., 2019). We ac-
cepted multiple SNPs per read and thinned the data set downstream 
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F I G U R E  1  Population structure analyses. (a) Sampling locations, (b) principal coordinate analyses for data set A (4,422 SNPs) and 
(c) principal coordinate analyses for data set B (12,616 SNPs); (d) and (e) principal coordinate analyses on samples using data set A or B 
(respectively) restricted to the Mediterranean. Eastern basin samples are represented by triangles.
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when appropriate. Pgd- sPider (Lischer & Excoffier, 2012) or vcftools 
(Danecek et al., 2011) was used to convert the SNP data into PED 
and MAP format. Binary files (BED, RAW and BIM) were generated 
from PED and MAP files using Plink (Purcell et al., 2007). The vcftools 
flags - - depth and - - site- depth were used to calculate read depth per 
individual and per SNP. SNP data management and analyses were 
performed in R version 3.6.2 (R Core Team, 2019) using wrapper 
functions of the R package sambar (de Jong et al., 2021). The data 
were imported into R and stored in a genlight object using the func-
tion “read.PLINK” of the R package adegenet version 2.1.1 (Jombart 
& Ahmed, 2011).

2.3  |  SNP and sample filtering

Two data sets were obtained using two different threshold filters. 
Data set A excluded samples with more than 50% missing data and all 
loci with greater than 5% missing data. Data set B excluded all sam-
ples with more than 25% missing data and all loci with greater than 
5% missing data (see Table S2). Both data sets were thinned selecting 
one SNP per 500- bp region, in order to limit SNPs to one per paired- 
end read, and used for further structure and diversity analyses.

2.4  |  Population structure

The two data sets were used in most of the analyses to test for di-
vergence between Atlantic and Mediterranean populations and 
within the Mediterranean putative western and eastern popula-
tions. Replicates were detected using KING- robust score calcula-
tions (Manichaikul et al., 2010) and were excluded from the analyses. 
Kinship analyses were performed only on data set B due to the 
higher number of SNPs, using the pi_hat score of the software Plink 
(Purcell et al., 2007). The background variation was based on the 
Atlantic and Mediterranean samples separately.

Population structure was assessed in R, using sambar wrapper 
functions. Principal coordinate analysis (PCoA) was calculated using 
aPe version 5.3 (Paradis & Schliep, 2019) for both data sets. PCoA 
is more suitable for the analyses of categorical data (like genotype 
data: 0, 1 and 2) than principal components analysis (PCA). Structure 
analyses were performed using two methods: the Landscape and 
Ecological Studies (lea 3.10.0) package (Frichot & François, 2015) 
setting the putative number of population (K) to 2– 4, and admix-
ture 1.3 (Alexander et al., 2009), giving prior assignment to Atlantic 
and Mediterranean populations. We performed 20 repeat runs 
using Pong (https://github.com/ramac handr an- lab/pong; see Behr 
et al., 2016), using a greedy approach to identify modes and default 
threshold (0.95) for determining modes. F- statistics were assessed in 
arlequin version 3.5 (Excoffier & Lischer, 2010) with 10,000 permu-
tations and the level of missing data set to 0.05. FST was calculated 
for both data sets at three levels: (i) all sampled areas, (ii) Atlantic vs. 
Mediterranean populations and (iii) Atlantic vs. western vs. eastern 
putative populations.

2.5  |  Migration rates and population modelling

Contemporary migration rates were calculated using bayesass3- snPs 
(Mussmann et al., 2019) using both data sets comparing Atlantic 
vs. Mediterranean populations and Atlantic vs. western vs. eastern 
Mediterranean populations. bayesass3 uses allele frequency data and 
Markov chain Monte Carlo (MCMC) simulations to find individuals 
that are migrants or have migrant ancestry “over the last several 
generations.” The analysis was run with 1,000,000 iterations and 
a burn- in of 100,000 iterations, seed of 10 and delta value of 0.1. 
Output matrices were converted into gene flow plots with the use of 
the R package circlize version 0.4.6 (Gu et al., 2014) through sambar.

We considered four scenarios in diyabc (see Collin et al., 2021; 
https://github.com/diyabc) to test inference about one or two popu-
lations in the Mediterranean. These had the Atlantic as an ancestral 
population (at t2) and a split within the Mediterranean later at t1, 
the Western Mediterranean as ancestral, the Eastern Mediterranean 
as ancestral, and only two populations, Atlantic and Mediterranean. 
We excluded admixed individuals, and the number of simulations in 
the training set was to 120 while the number of trees was 500. The 
priors were default flat priors.

2.6  |  Admixture and population dynamics

Patterns of admixture were interrogated using the Unix software 
treemix version 1.13 (Pickrell & Pritchard, 2012) using the Atlantic 
population as an outgroup and testing for one migration event, while 
the parameter f3 was calculated using the R program admixtools ver-
sion 2 using default settings (Patterson et al., 2012). Both analyses 
were performed on sample set B comparing the putative Atlantic, 
western Mediterranean and eastern Mediterranean populations. 
treemix uses allele frequencies to construct a maximum- likelihood 
tree and builds a model which allows for both population splits and 
gene flow to infer the pattern of admixture among lineages. The 
analysis was run with bootstrap replicate over blocks of 500 con-
tiguous SNPs (as suggested in the manual). The f3 statistic assesses 
the covariance of allele frequencies between a population pair with 
a shared outgroup. Measuring the shared drift between the popu-
lation pairs in the context of drift that is specific to single popula-
tions allows inference about their relationship and the chance of 
admixture.

The historical demography of the Atlantic and the Mediterranean 
populations was inferred using Stairway plot analysis (Liu & Fu, 2020). 
Due to potential issues with admixture affecting demographic infer-
ence (e.g., Heller et al., 2013), we analysed pooled population sam-
ples that showed no evidence of differentiation. One sample from 
Galicia from the Atlantic sample was omitted due to missing data, and 
those individuals from Liguria with a clear signal for admixture with 
the Atlantic were also excluded. The folded site frequency spectrum 
(SFS) was calculated using the software package angsd version 0.938 
(Korneliussen et al., 2014). The proportion of sites used for training 
was 0.67, and the number of input files created for estimations was 
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200. As in Morin et al. (2018), the mutation rate was set at 2.9 × 10−8 
substitutions per nucleotide per generation based on Dornburg 
et al. (2012) and the generation time at 31.9 years based on Taylor 
et al. (2007). A comparative assessment that can estimate relatively 
recent Ne with greater accuracy was applied (using the same sample 
sets as for the stairway plots), drawing inference from linkage dis-
equilibrium (LD). This was assessed using sneP software version 1.11 
(Barbato et al., 2015, after Corbin et al., 2012). Ne estimation was 
calculated with a minimum and maximum distance between SNPs 
of 50,000 and 4 Mb, respectively. Data were arranged in 30 bins of 
50 kb distance each. The maximum number of SNPs per chromo-
some was set to 100,000. The formula used to estimate Ne from LD 
was as proposed by Sved and Feldman (1973), as recommended from 
a comparative analysis by García- Cortés et al. (2019).

3  |  RESULTS

3.1  |  Reads and SNPs

A total of 160 sperm whale individuals were sequenced. Both se-
quencing lanes combined produced 628.9 million reads. Up to 16.2 
million reads had to be discarded due to either low quality, an am-
biguous radtag or a missing read mate, resulting in an average of 
1.9 million read pairs per sample (SD: 1.3 million, min: 0.003 million, 
max: 6.5 million). Individuals with less than 10%, 1%, 0.5% and 0.25% 
missing data had a minimum coverage of respectively 3, 8.6, 8.6 and 
23.2 reads. The mean sequence depth per individual ranged from 
3.2 to 184.4 reads per SNP, with a mean 12.4 reads. From a total 
of 46,717 SNPs, after filtering and thinning, 132 samples and 4,422 
SNPs were retained for data set A and 117 samples, and 12,616 
SNPs were retained for data set B. Ten samples found as replicates 
were excluded (Tables S1 and S2).

3.2  |  Population structure and gene flow

Comparisons assessing genetic differentiation between the Atlantic 
and Mediterranean populations based on FST were significant for 
both data sets, as was the FST value comparing the western and 
eastern basins (Table 1). The FST value within the Mediterranean 
was lower than for comparisons with the Atlantic, but significantly 
greater than zero. A subdivision between the basins is sensible based 

on physical and oceanographic differences, and based on evidence 
of differentiation across this boundary for other highly mobile spe-
cies (such as the bottlenose dolphin, Tursiops truncatus; see Natoli 
et al., 2005 and discussion therein). This established a pattern that 
we then further investigated using ordination (PCoA) and assign-
ment (lea and admixture) methods.

PCoA revealed that Atlantic samples form a tight cluster (blue 
circle) separated from Mediterranean samples (green circle; both 
data sets are shown in Figure 1b,c). The Mediterranean samples are 
distributed over a broader range of Euclidian space in the plot, and 
there is only a weak pattern of differentiation among samples from 
the western and eastern basins (Figure S1). The pattern is somewhat 
clearer when only samples from within the Mediterranean are in-
cluded, but there is still overlap (Figure 1d,e). Kinship estimations (pi- 
hat scores) are consistent with lower overall pairwise kinship among 
samples collected in the Atlantic than among samples collected in 
the Mediterranean Sea (Figure S2). While the values are consistently 
higher in the Mediterranean, they also extend over a broader range 
(Figure S2). Support values are low per axis, but this is typical when 
based on many loci.

lea analyses with values of K = 2– 4 revealed a clear differen-
tiation between the Mediterranean and Atlantic samples and, for 
K = 3– 4, inconsistent differentiation between the western and 
eastern Mediterranean basins (Figure 2). A cross- entropy anal-
ysis shows that both K = 2 and K = 3 are equally well supported 
(Figure S3). As expected, the pattern was somewhat clearer when 
only Mediterranean samples were included (Figure 2c). This is con-
firmed using Pong to repeat the admixture Mediterranean- only anal-
yses 20 times (Figure S4). For K = 2– 4 for the Mediterranean- only 
samples (Figure S5) the lowest validation error is again K = 2 (K2 
cv = 0.22375; K3 cv = 0.24256; K4 cv = 0.25900). For Bayesian 
modelling in diyabc, three populations (Atlantic as ancestral followed 
by an east vs. west split within the Mediterranean) was as well sup-
ported as a model that considered only two populations (Atlantic 
and Mediterranean; Figure S6).

Mixed Atlantic/Mediterranean ancestry was found within 
Mediterranean areas consistently at all K values. The proportions of 
the admixture coefficient for K = 2 was estimated in admixture, based 
on separate Atlantic and Mediterranean putative populations (K = 2), 
as K = 2 gave the lowest cross- validation error when all samples were 
included (K = 2: cv 0.2234; K = 3: cv 0.2318; K = 4: cv 0.2486). This 
analysis revealed a subset of Mediterranean samples with mixed 
Atlantic/Mediterranean ancestry, especially from the western basin 

TA B L E  1  Pairwise FST values calculated using arlequin version 3.5 and based on data set A (below the diagonal) and data set B (above the 
diagonal).

Atlantic West Mediterranean East Mediterranean

Atlantic — .03009* .04085*

West Mediterranean .03099* — .01276*

East Mediterranean .03583* .01203* — 

*Values are significant at p = .000 (to the resolution provided by the program). Cell colour corresponds to comparisons between the Atlantic and 
Mediterranean (dark blue) or within the Mediterranean (light blue).
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(Figure 2b). That was the case for 29 samples (29/85 = 34%) overall, 
including three (3/85 = 3.5%) samples from the Strait of Gibraltar, 
24 (24/85 = 28.2%) samples from the Ligurian– Provençal area, one 
(1/85 = 1.1%) sample from the Tyrrenian Sea and one (1/85 = 1.1%) 
sample from the Adriatic Sea. These samples showed assignment 
probabilities to the Atlantic population ranging from 14% to 74% 
(Table S3). Averaged over all samples within each basin, there was 
12.6% admixture from the Atlantic in the western basin, and 0.7% 
in the eastern basin. Individuals showing some level of admixture in 
the admixture analysis were marked as red dots in the PCoA shown 
in Figure S1b and all groups within the Mediterranean cluster. An f3 
analysis showed marginal values, but a stronger indication of admix-
ture for the western region with the Atlantic than for other possible 
combinations (Figure 3c; Table 4). The analysis in treemix showed the 
same pattern, with admixture suggested from the Atlantic into the 
western region (Figure 3d), though the drift parameter is low for the 
tree overall. Neither of these methods specifically identifiesg only 
recent migrants (as in bayesass3). Also, while bayesass3 can consider 
bidirectional gene flow, in treemix we could only test one migration 
edge due to the simplicity of the tree.

Investigations of contemporary migration rate were conducted 
with bayesass3- SNPs. A first analysis was run for both data sets be-
tween the Atlantic and Mediterranean populations and revealed 
an estimated proportion of migrants of ~1% through the Strait of 
Gibraltar in both directions (Figure 3a; Table 2), consistent with ei-
ther low gene flow or the relatively recent cessation of gene flow. 
A second analysis, between the Atlantic, western and eastern 
Mediterranean putative populations, indicated recent or ongoing 
directional movement between the two basins from west to east 
(about 18%– 26%), and low (~1%) gene flow between each basin and 
the Atlantic (Figure 3b; Table 3).

3.3  |  Demography

All three stairway plot profiles (Figure 4) showed an apparent in-
crease in population size during the early part of the Pleistocene, 
though recent time periods (within the last ~10,000 years) are less 
precise by this method and therefore should be interpreted with 
caution. All three regions showed a similar effective population 

F I G U R E  2  (a) lea plots of population 
structure including all samples for K = 2– 
4. (b) Estimated proportions of admixture 
for K = 2. Atlantic assignment is in blue 
and Mediterranean in green. Estimates 
developed in admixture and visualized in 
R. (c) lea plots of population structure 
including only Mediterranean samples for 
K = 2– 4.
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size (Ne) (in the range 10,000– 20,000) and profile prior to the last 
glacial maximum (LGM ~20,000 years ago [ka]). After that, all pop-
ulations showed a decline, but this was most severe within the 

Mediterranean (down to ~1,000 while in the Atlantic the decline was 
only to ~8,000). Our comparative assessment using inference from 
LD (in the program sneP) showed a similar estimate for Ne at ~7 ka, but 
then a steeper decline to the present (Figure S7). The contemporary 
estimate of Ne was low by this method (~100; within the confidence 
limits of estimates from the stairway plots). Ne for the Atlantic was 
largest followed by the western and then eastern Mediterranean, 
but all had a similarly low level for the most recent estimates.

4  |  DISCUSSION

4.1  |  Atlantic vs. Mediterranean divergence

Our data support the differentiation between the North Atlantic 
and Mediterranean Sea described in previous genetic and acoustic 
studies (e.g., Drouot, Berube, et al., 2004; Engelhaupt et al., 2009; 

F I G U R E  3  Gene flow analyses. Circos 
plots showing migration rates between 
populations as calculated by bayesass3- 
snPs. (a) Atlantic (blue) and Mediterranean 
(green) putative populations. (b) Atlantic 
(blue) and Western (orange) and 
Eastern (green) Mediterranean putative 
populations. (c) f3 statistic values using 
Atlantic, west Mediterranean and east 
Mediterranean putative populations. All 
values are significant at p < .05 based 
on the Z- scores shown. (d) Maximum- 
likelihood tree generated with treemix 
of Western and Eastern Mediterranean 
populations with inferred migration edges.
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TA B L E  2  Migration rates between Atlantic and Mediterranean 
populations using data set A (above) and data set B (below).

Current

Source

Atlantic Mediterranean

Atlantic 0.9916 (0.0081)
0.9903 (0.0094)

0.0084 (0.0081)
0.0097 (0.0094)

Mediterranean 0.0063 (0.0044)
0.0088 (0.0074)

0.9937 (0.0044)
0.9912 (0.0074)

Note: Rates with standard deviations in parentheses defined as the 
proportion of individuals in a “current” population (in rows) that are 
migrants derived from a “source” population (in column), per generation. 
Values inferred in bayesass3- snPs.
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Current

Source

Atlantic West Mediterranean East Mediterranean

Atlantic 0.9757 (0.0136)
0.9810 (0.0129)

0.0081 (0.0079)
0.0191 (0.0130)

0.0162 (0.0113)
0.0094 (0.0091)

West Mediterranean 0.0042 (0.0041)
0.0129 (0.0123)

0.9639 (0.0114)
0.9826 (0.0103)

0.0320 (0.0108)
0.0101 (0.0079)

East Mediterranean 0.0117 (0.0114)
0.0099 (0.0071)

0.2467 (0.0293)
0.2355 (0.0759)

0.7416 (0.0280)
0.7516 (0.0755)

TA B L E  3  Migration rates between 
Atlantic West Mediterranean and East 
Mediterranean putative populations using 
data set A (values above) and data set B 
(values below).

TA B L E  4  f3 statistic among Atlantic West Mediterranean and East Mediterranean putative populations.

pop1 pop2 pop3 est SE z p

Atlantic W Mediterranean E Mediterranean 0.0018 6.25E- 05 29.7818 <.00001

W Mediterranean E Mediterranean Atlantic −7.9 E- 05 3.16E- 05 −2.4851 .00459

E Mediterranean Atlantic W Mediterranean 0.0009 4.58E- 05 19.9024 <.00001

F I G U R E  4  Demographic analyses 
using stairway plots. (a) Atlantic subset; (b) 
western Mediterranean subset; (c) eastern 
Mediterranean subset. Last glacial period 
(LGP) and last glacial maximum (LGM) are 
indicated by shading. Red line indicates 
the median values. Black lines indicate 
12.5% and 87.5% percentile values, and 
grey margins indicate 2.5% and 97.5% 
percentile values.
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2724  |    VIOLI et al.

Mesnick et al., 2011; Morin et al., 2018; Rendell & Frantzis, 2016). 
Pairwise comparison between these two areas in our study 
based on 12,616 SNP markers reveals a low but significant value 
(FST = 0.03454, p = .000), consistent with that reported in Engelhaupt 
et al. (2009; where FST = 0.034, p = .022 based on 16 microsatellite 
DNA markers). Significant genetic division between the Atlantic and 
Mediterranean areas has also been documented for other cetaceans 
such as fin whale (Balaenoptera physalus; Bérubé et al., 1998; Palsbøll 
et al., 2004), bottlenose dolphin (T. truncatus; Natoli et al., 2005) and 
Cuvier's beaked whale (Ziphius cavirostris; Onoufriou et al., 2022), 
and for other top predators such as swordfish (Xiphias gladius; 
Smith et al., 2015) and the blue fin tuna (Thunnus thynnus; Puncher 
et al., 2018). Our findings from lea and admixture were consistent 
with Atlantic ancestry of the Mediterranean populations. Estimates 
of contemporary migration patterns indicate low gene flow through 
the Strait of Gibraltar, ~1% migration per generation in both direc-
tions. Sperm whales have been routinely observed in the Strait of 
Gibraltar, both in summer (de Stephanis et al., 2008) and in winter 
(Gauffier et al., 2012, 2018). Some movements from the Strait of 
Gibraltar to the Balearic Islands and the Ligurian– Provençal area 
and vice versa have also been documented through photoidentifica-
tion (Carpinelli et al., 2014). Historical reports from Bolognari (1949, 
1950, 1951) suggested seasonal movements through the Strait of 
Gibraltar— entering in the winter and going out in spring. Movements 
from the Atlantic into the Mediterranean Sea have also been re-
corded for other cetacean species (e.g., fin whales: Castellote 
et al., 2010; Gauffier et al., 2018, 2020; Giménez et al., 2013; hump-
back whales Megaptera novaeangliae: Violi et al., 2021; killer whales 
Orcinus orca: Mrusczok et al., 2021).

A complex network of submarine canyons in the western 
Mediterranean act as corridors between continental shelf areas and 
deep- sea regions, enhancing oceanographic processes that enrich 
the deep- sea food web (De Leo et al., 2010) and create a favourable 
environment for the cephalopod species (e.g., Quetglas et al., 2000) 
that sperm whales prey on. Therefore, this region can support 
the energetic demands of sperm whales and other deep divers 
(Torreblanca et al., 2022). Distinct resource availability and resource 
specializations have been proposed as drivers of differentiation 
in various cetacean species (see Hoelzel, 2009; Louis et al., 2014). 
However, the umbrella squid Histioteuthis bonnellii is evidently the 
most common prey of sperm whales both in the Mediterranean Sea 
(Foskolos et al., 2020; Garibaldi & Podestà, 2014; Tonay et al., 2021) 
and in the Atlantic Ocean (Clarke et al., 1993), and so resource spe-
cialization may not be an important driver in this case. We note that 
in this study we have not tested for the various other environmen-
tal drivers that may be relevant, such as surface temperature and 
salinity.

4.2  |  Structure within the Mediterranean

Within the Mediterranean, we report weak differentiation between 
the basins either side of Italy and the Strait of Sicily, as observed 

in other species (e.g., bottlenose dolphin in Gaspari et al., 2015; 
Natoli et al., 2005; striped dolphin in Gaspari et al., 2007; Cuvier's 
beaked whale in Onoufriou et al., 2022). The relatively shallow sill 
at the Strait of Messina and the Sicilian Channel, and the differential 
current patterns in the two basins probably reinforce this bound-
ary. Our results from PCoA and lea were largely consistent with FST, 
which showed significant differentiation between the western and 
eastern basins, though weaker than the differentiation between the 
North Atlantic and Mediterranean Sea. Assignment analysis (using 
lea) restricted to the Mediterranean samples showed a weak pat-
tern when K = 3 or 4 (Figure 2), but this type of assignment method 
has low power to resolve a pattern when FST is lower than ~0.02 
(Latch et al., 2006). Ordination (PCoA) showed some separation be-
tween western and eastern basin samples, but some overlap as well. 
We found evidence of admixture between the North Atlantic and 
Mediterranean Sea, based on analyses using the program admixture 
(Figure 2), f3 statistics and treemix (Figure 3). We propose that the 
signal for differentiation between the two basins is driven largely 
by the more frequent historical admixture between the Atlantic and 
the western basin than with the eastern basin. Signals for ongoing 
migration based on bayesass also show relatively low, bidirectional 
gene flow between the Atlantic and the Mediterranean, but rela-
tively high, directional gene flow from the western into the eastern 
basin (see Figure 3). One possible interpretation would be that the 
signal for differential admixture from the Atlantic into the western 
basin pre- dates a more recent increase in gene flow from the west-
ern into the eastern basin (since bayesass should register only recent 
movement).

4.3  |  Diversity and demography

Overall, the Mediterranean samples show higher pairwise kin-
ship than the samples from the North Atlantic (Figure S2), reflect-
ing reduced diversity overall (assuming random sampling). This 
is consistent with the results from demographic profiling, where 
the estimated contemporary Ne is approximately six times lower 
in the Mediterranean than in the Atlantic based on the stairway 
plots (Figure 4), though the difference was smaller based on sneP 
(Figure S7). After a period of relative stasis through the latter part 
of the Pleistocene, all putative populations show a decline starting 
around the time of the LGM (Figure 4), and the overall profile is simi-
lar for all. However, the Mediterranean trajectories diverge from the 
Atlantic trajectory at that time. This would fit with a timeframe of 
within the last 20,000 years for the founding of the Mediterranean 
by sperm whales, as suggested by Morin et al. (2018). The decline 
in the Mediterranean might be explained by a relatively small 
founder population, a low rate of migration between the Atlantic 
and Mediterranean after founding, and a consequent reduction in 
Ne within the Mediterranean. At the same time, the parallel pattern 
of demography is interesting, suggesting that both populations were 
impacted by a similar process leading to population decline. Based 
on mtDNA mismatch distributions, Alexander et al. (2016) suggested 
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a post- bottleneck expansion signal world- wide as recently as 10 ka. 
The stairway plots and sneP gave similar Ne estimates between ~7 
and 1 ka (especially within the Mediterranean), but the stairway 
plot estimates then level off, and are known to be less accurate for 
very recent timeframes (reflected in the confidence limit estimates; 
Figure 4). sneP estimates continue to decline, suggesting low Ne in 
modern populations both in the Mediterranean and in the Atlantic.

Episodes of ocean cooling/warming are proposed to have in-
fluenced the distribution and abundance of various cetacean spe-
cies and such events could have led to restricted home ranges 
(Gaskin, 1982). Morin et al. (2018) proposed this scenario for sperm 
whales, whose suitable habitat for females was reduced up to 50% 
since the LGM. Cold regions at high latitude were covered by ice, and 
sperm whale males, which usually feed in these regions, may have 
instead occupied the same home range as females and their social 
units, which normally do not range into cold waters (Best, 1979). This 
change of age/sex class distribution and overlap could have led to 
competition for resources and a reduction of food availability.

Some species known to be preyed on by sperm whales, such 
as the giant squid (Architeuthis spp.: Winkelmann et al., 2013), 
the Humboldt squid (Dosidicus gigas: Ibáñez et al., 2011) and the 
Patagonian longfin squid (Doryteuthis gahi: Ibáñez & Poulin, 2014) 
show low mitogenomic diversity and signatures of demographic/
range expansions associated with the LGM. Some cetacean spe-
cies such as long- finned pilot whale (Globicephala melas: Kraft 
et al., 2020), northern bottlenose whale (Hyperoodon ampullatus: 
Feyrer et al., 2019), white- sided dolphins (Lagenorhynchus obliq-
uidens: Banguera- Hinestroza et al., 2010) and killer whales (Moura 
et al., 2014) also show a similar expansion pattern.

The Mediterranean Sea played a key role as a refuge for sev-
eral marine species during the last glacial period (see Patarnello 
et al., 2007). During Pleistocene glaciations, sea level was up to 
150 m lower (Lambeck & Purcell, 2005), changing oceanographic 
features that created isolated refugia and geographical barriers to 
gene flow, followed by post- glacial dispersal and expansion (Xue 
et al., 2014). Previous studies have suggested that Mediterranean 
biodiversity more generally is the result of endemism from glacial 
refugia (see Patarnello et al., 2007). During the LGM, changes in 
the pattern of deep- water availability were more pronounced in the 
eastern basin (Mikolajewicz, 2011; Thunell & Williams, 1989). In the 
western basin, sperm whales could have found suitable deep- water 
habitat to colonize where there was likely to be cephalopod prey.

4.4  |  Conservation

Our data are consistent with previous studies showing significant ge-
netic differentiation between the North Atlantic and Mediterranean 
sperm whale populations, and within the Mediterranean greater 
identity by descent and consequently lower Ne. Demographic pro-
files show a shared history until around the time of the LGM, after 
which the decline in Ne in the Mediterranean was probably greater 
than in the Atlantic. Our estimates of effective population size are 

low, consistent with the IUCN- Red list assessment, which classi-
fied the Mediterranean sperm whale population as Endangered 
(see Pirotta et al., 2021). Our data support the need to manage the 
Atlantic and Mediterranean populations separately. Estimates of 
gene flow suggest low contemporary levels between the Atlantic and 
the Mediterranean, but more historical admixture. Greater historical 
admixture in the west and some level of isolation between the ba-
sins appears to explain the pattern of differentiation between basins, 
though gene flow may have increased recently (from west to east 
based on the analysis in bayesass). Any persistent subdivision within 
the Mediterranean Sea would exacerbate conservation concerns and 
require consideration of what distinct impacts may affect popula-
tions in the two basins. Here we find a weak but significant subdi-
vision between the eastern and western basins, probably driven by 
differential patterns of admixture with the Atlantic population (more 
in the west). We also find evidence for a lower Ne in the eastern basin 
(see Figure S7). We therefore would propose that the eastern and 
western populations be considered separate management units.

It has been proposed that sperm whales in the Mediterranean are 
not directly threatened by fisheries since their main prey is H. bon-
nellii (Foskolos et al., 2020; Garibaldi & Podestà, 2014), which is not 
a target of fishery activity. However, Mazzariol et al. (2011) found 
several hooks within stomach content analyses of stranded sperm 
whales, suggesting possible feeding activity along fishing lines as de-
scribed in some oceanic regions (e.g., Jacobsen et al., 2010). At the 
same time, fishery activity can also impact sperm whales through en-
tanglement in fishing nets (e.g., Blasi et al., 2021; Pace et al., 2008). 
Ghost nets, ship collision and the ingestion of plastic debris are the 
three main impacts that are seriously threatening these endangered 
sperm whales in the Mediterranean Sea (Alexiadou et al., 2019; de 
Stephanis et al., 2013; Frantzis et al., 2019).

5  |  CONCLUSIONS

Marine systems can be a challenge for the identification of patterns 
of population structure and the units of conservation for effective 
management (e.g., Alves et al., 2019). Apart from obvious conti-
nental barriers, physical barriers are few, and even continental bar-
riers can be overcome (by going around; see Hoelzel et al., 2021). 
However, oceanic structures, such as current systems (e.g., Knutsen 
et al., 2007) that move or concentrate larvae, prey or predators can 
determine distribution patterns that remain cryptic unless the rel-
evant drivers are understood (see Goncalves da Silva et al., 2019). 
This reflects a need to combine genetics with ecological data to in-
tegrate evidence for both genetic and ecological management units 
(e.g., Esteban et al., 2016; Giménez et al., 2018). Historical changes 
in species distributions, such as those driven by the glacial cycles 
of the Pleistocene, can also shape modern- day population struc-
ture (e.g., Bracken et al., 2015). In our study, we find that a highly 
mobile species probably founded an isolated population around the 
end of the last glacial period, and that this founder population was 
further structured by some period of admixture between the source 
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population and the region within the Mediterranean most proximate 
to the source. This may be a useful model for investigating other pat-
terns of cryptic structure in marine systems.
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